Research and Development of User Clustering-Based Content Similarity Algorithms in Dance-Assisted Choreography Techniques

Author:

Wu Yanyan1ORCID,Liu Min2

Affiliation:

1. School of Architecture and Art, Central South University, Changsha 410000, Hunan, China

2. College of Music and Dance, Huaihua University, Huaihua 418000, Hunan, China

Abstract

With the gradual development of digital information and software computing capabilities, the use of computers in dance-assisted choreography is becoming more and more widespread. But although the level of computers is now in rapid development, the technical level of using computers in dance choreography is not yet very mature, technical support is not in place, dance-assisted choreography is not effective, and the existing technical level is not yet able to meet the new needs of dance choreography. In order to improve the dance-assisted choreography technology and provide a more complete educational user interface for dance-assisted choreography, the content similarity algorithm of user clustering has a wide range of operations and a strong ability to calculate the amount of data, combined with the computer to apply the content similarity algorithm of user clustering in dance-assisted choreography technology to build a dance-assisted choreography system based on user clustering. The article proposes three major methods based on collaborative filtering algorithm of user clustering, collaborative filtering algorithm based on similarity class and user preference, and fuzzy cluster analysis of users and analyses their principles. In the experimental part, the performance of IBCF algorithm and collaborative filtering algorithm in dance-assisted choreography system is compared and analysed to observe the change of MAE value under the change of user similarity with number under different k values of cluster classes. The experimental results found that the MAE values of the IBCF algorithm and the collaborative filtering algorithm in the system were at 0.84 and 0.76, respectively, with a difference of about 8% between the two MAE values. The smaller the MAE value, the higher the effectiveness in the dance-assisted choreography technique. Applying the clustering algorithm to the system to make local adjustments and analysis of dance movement paths, it can grasp the choreography rules more precisely and innovate the choreography techniques.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3