Data-Driven Decision-Support System for Speaker Identification Using E-Vector System

Author:

Ma He1,Zuo Yi1234ORCID,Li Tieshan12,Chen C. L. Philip12

Affiliation:

1. Navigation College, Dalian Maritime University, Dalian 116026, China

2. Maritime Big Data & Artificial Intelligent Application Center, Dalian Maritime University, Dalian 116026, China

3. Collaborative Innovation Center for Transport Studies, Dalian Maritime University, Dalian 116026, China

4. The Research Institute for Socionetwork Strategies, Kansai University, Osaka 5648680, Japan

Abstract

Recently, biometric authorizations using fingerprint, voiceprint, and facial features have garnered considerable attention from the public with the development of recognition techniques and popularization of the smartphone. Among such biometrics, voiceprint has a personal identity as high as that of fingerprint and also uses a noncontact mode to recognize similar faces. Speech signal-processing is one of the keys to accuracy in voice recognition. Most voice-identification systems still employ the mel-scale frequency cepstrum coefficient (MFCC) as the key vocal feature. The quality and accuracy of the MFCC are dependent on the prepared phrase, which belongs to text-dependent speaker identification. In contrast, several new features, such as d-vector, provide a black-box process in vocal feature learning. To address these aspects, a novel data-driven approach for vocal feature extraction based on a decision-support system (DSS) is proposed in this study. Each speech signal can be transformed into a vector representing the vocal features using this DSS. The establishment of this DSS involves three steps: (i) voice data preprocessing, (ii) hierarchical cluster analysis for the inverse discrete cosine transform cepstrum coefficient, and (iii) learning the E-vector through minimization of the Euclidean metric. We compare experiments to verify the E-vectors extracted by this DSS with other vocal features measures and apply them to both text-dependent and text-independent datasets. In the experiments containing one utterance of each speaker, the average accuracy of the E-vector is improved by approximately 1.5% over the MFCC. In the experiments containing multiple utterances of each speaker, the average micro-F1 score of the E-vector is also improved by approximately 2.1% over the MFCC. The results of the E-vector show remarkable advantages when applied to both the Texas Instruments/Massachusetts Institute of Technology corpus and LibriSpeech corpus. These improvements of the E-vector contribute to the capabilities of speaker identification and also enhance its usability for more real-world identification tasks.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3