Vessel Navigation Behavior Analysis and Multiple-Trajectory Prediction Model Based on AIS Data

Author:

Ma He12ORCID,Zuo Yi134ORCID,Li Tieshan15ORCID

Affiliation:

1. Navigation College, Dalian Maritime University, Dalian 116026, China

2. Ocean College, Zhejiang University, Zhoushan 316021, China

3. Collaborative Innovation Center of Maritime Big Data & Artificial General Intelligence, Dalian Maritime University, Dalian 116026, China

4. The Research Institute for Socionetwork Strategies, Kansai University, Osaka 5648680, Japan

5. University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

With the increasing application and utility of automatic identification systems (AISs), large volumes of AIS data are collected to record vessel navigation. In recent years, the prediction of vessel trajectories has become one of the hottest research issues. In contrast to existing studies, most researchers have focused on the single-trajectory prediction of vessels. This article proposes a multiple-trajectory prediction model and makes two main contributions. First, we propose a novel method of trajectory feature representation that uses a hierarchical clustering algorithm to analyze and extract the vessel navigation behavior for multiple trajectories. Compared with the classic methods, e.g., Douglas–Peucker (DP) and least-squares cubic spline curve approximation (LCSCA) algorithms, the mean loss of trajectory features extracted by our method is approximately 0.005, and it is reduced by 50% and 30% compared to the DP and LCSCA algorithms, respectively. Second, we design an integrated model for simultaneous prediction of multiple trajectories using the proposed features and employ the long short-term memory (LSTM)-based neural network and recurrent neural network (RNN) to pursue this time series task. Furthermore, the comparative experiments prove that the mean value and standard deviation of root mean squared error (RMSE) using the LSTM are 4% and 14% lower than those using the RNN, respectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3