A Parameter-Optimized DBN Using GOA and Its Application in Fault Diagnosis of Gearbox

Author:

Gai Jingbo1,Shen Junxian1ORCID,Wang He1,Hu Yifan2

Affiliation:

1. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang Province, China

2. School of Electrical Engineering and Automation, Harbifn Institute of Technology, Harbin 150001, Heilongjiang Province, China

Abstract

Aiming at the problems of poor self-adaptive ability in traditional feature extraction methods and weak generalization ability in single classifier under big data, an internal parameter-optimized Deep Belief Network (DBN) method based on grasshopper optimization algorithm (GOA) is proposed. First, the minimum Root Mean Square Error (RMSE) in the network training is taken as the fitness function, in which GOA is used to search for the optimal parameter combination of DBN. After that the learning rate and the number of batch learning in DBN which have great influence on the training error would be properly selected. At the same time, the optimal structure distribution of DBN is given through comparison. Then, FFT and linear normalization are introduced to process the original vibration signal of the gearbox, preprocess the data from multiple sensors and construct the input samples for DBN. Finally, combining with deep learning featured by powerful self-adaptive feature extraction and nonlinear mapping capabilities, the obtained samples are input into DBN for training, and the fault diagnosis model for gearbox based on DBN would be established. After several tests with the remaining samples, the diagnosis rate of the model could reach over 99.5%, which is far better than the traditional fault diagnosis method based on feature extraction and pattern recognition. The experimental results show that this method could effectively improve the self-adaptive feature extraction ability of the model as well as its accuracy of fault diagnosis, which has better generalization performance.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3