Research on Fault Diagnosis Based on Singular Value Decomposition and Fuzzy Neural Network

Author:

Gai Jingbo1,Hu Yifan1ORCID

Affiliation:

1. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China

Abstract

A method based on singular value decomposition (SVD) and fuzzy neural network (FNN) was proposed to extract and diagnose the fault features of diesel engine crankshaft bearings efficiently and accurately. Firstly, vibration signals of crankshaft bearings in known state under the same working condition were decomposed by EMD to obtain the modal components containing fault-feature information. Then, the singular values of modal components which include the main fault features were used as the initial vector matrix, where the eigenvectors were decomposed to form a fault characteristic matrix. At last, the fault features matrix was trained by the fuzzy neural network, in order to realize the diagnosis and identification of the crankshaft bearings in different states in the form of numerical values. The experiment showed that the numerical identification of the fuzzy neural network based on the singular value had high fault diagnosis accuracy and stability. This method can also reflect the gradual change of the crankshaft bearings’ fault to some extent, so it has the desired reliability and value.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3