Analysis of Dynamic Characteristics of Pressure-Regulating and Pressure-Limiting Combined Relief Valve

Author:

Shi Rui1ORCID,Wang Chuanli12ORCID,He Tao12ORCID,Xie Tian1ORCID

Affiliation:

1. School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China

2. Anhui Key Laboratory of Mine Intelligent Equipment and Technology, Huainan 232001, Anhui, China

Abstract

Aiming at the problem of the lack of a cooperation mechanism of combined relief valves, this paper proposes a new pressure-regulating and pressure-limiting combined relief valve. Combined with the ordinary relief valve dynamic characteristic analysis method, the dynamic model of the combined relief valve under normal working conditions was established, and its dynamic characteristics were simulated using Simulink. The results showed that the multi-pressure stabilization design of the combined relief valve improves its usability and stability. Under the same structural parameters, the overshoot of the combined relief valve was 5.7%, and the response time was 12 ms, which is better than the ordinary relief valve. Besides, it effectively improves the instability problems, such as the vibration and the large pressure fluctuation of the ordinary relief valve under high pressure and large flow conditions. When the sum of the effective force area on the upper side of the flange of the pressure-regulating valve core and the area of the tail vertebra is equal to the effective force area of the lower side of the flange of the pressure-regulating valve core, the dynamic performance of the relief valve is optimal. For example, if the effective force area under the flange is 1.8 cm2, then the inlet pressure overshoot is 2.8%, and the response time is 10 ms. An appropriate volume of the sensitive cavity, the quality of the valve core, and the fluid resistance of the pressure relief valve are factors that can effectively improve the dynamic performance of the pressure-regulating and pressure-limiting combined relief valve.

Funder

Anhui University of Science and Technology

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3