A Variable Radius Side Window Direct SLAM Method Based on Semantic Information

Author:

Chen Yan1ORCID,Ni Jianjun12ORCID,Mutabazi Emmanuel1,Cao Weidong12ORCID,Yang Simon X.3

Affiliation:

1. College of Internet of Things Engineering, Hohai University, Changzhou 213022, China

2. Jiangsu Key Laboratory of Power Transmission & Distribution Equipment Technology, Hohai University, Changzhou 213022, China

3. Advanced Robotics and Intelligent Systems (ARIS) Laboratory, School of Engineering, University of Guelph, Guelph, ON, Canada

Abstract

Simultaneous Localization and Mapping (SLAM) is a challenging and key issue in the mobile robotic fields. In terms of the visual SLAM problem, the direct methods are more suitable for more expansive scenes with many repetitive features or less texture in contrast with the feature-based methods. However, the robustness of the direct methods is weaker than that of the feature-based methods. To deal with this problem, an improved direct sparse odometry with loop closure (LDSO) is proposed, where the performance of the SLAM system under the influence of different imaging disturbances of the camera is focused on. In the proposed method, a method based on the side window strategy is proposed for preprocessing the input images with a multilayer stacked pixel blender. Then, a variable radius side window strategy based on semantic information is proposed to reduce the weight of selected points on semistatic objects, which can reduce the computation and improve the accuracy of the SLAM system based on the direct method. Various experiments are conducted on the KITTI dataset and TUM RGB-D dataset to test the performance of the proposed method under different camera imaging disturbances. The quantitative and qualitative evaluations show that the proposed method has better robustness than the state-of-the-art direct methods in the literature. Finally, a real-world experiment is conducted, and the results prove the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3