Affiliation:
1. Hunan University of Technology, Zhuzhou 412007, China
Abstract
Feature extraction and classification for deep learning are studied to recognize the problem of vehicle adhesion status. Data concentration acquired by automobile sensors contains considerable noise. Thus, a sparse autoencoder (stacked denoising autoencoder) is introduced to achieve network weight learning, restore original pure signal data by use of overlapping convergence strategy, and construct multiclassification support vector machine (SVM) for classification. The sensors are adopted in different road environments to acquire data signals and recognize the adhesion status online. Results show that the proposed method can achieve higher accuracies than those of the adhesion status recognition method based on SVM and extreme learning machine.
Funder
Key Laboratory for Electric Drive Control and Intelligent Equipment of Hunan Province
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献