Affiliation:
1. College of Traffic Engineering, Hunan University of Technology, Zhuzhou 412007, China
2. College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, China
Abstract
The traction performance of heavy-haul locomotive is subject to the wheel/rail adhesion states. However, it is difficult to obtain these states due to complex adhesion mechanism and changeable operation environment. According to the influence of wheel/rail adhesion utilization on locomotive control action, the wheel/rail adhesion states are divided into four types, namely normal adhesion, fault indication, minor fault, and serious fault in this work. A wheel/rail adhesion state identification method based on particle swarm optimization (PSO) and kernel extreme learning machine (KELM) is proposed. To this end, a wheel/rail state identification model is constructed using KELM, and then the regularization coefficient and kernel parameter of KELM are optimized by using PSO to improve its accuracy. Finally, based on the actual data, the proposed method is compared with PSO support vector machines (PSO-SVM) and basic KELM, respectively, and the results are given to verify the effectiveness and feasibility of the proposed method.
Funder
National Natural Science Foundation of China
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献