Deep Brain Stimulation with a Computational Model for the Cortex-Thalamus-Basal-Ganglia System and Network Dynamics of Neurological Disorders

Author:

Shaheen Hina1ORCID,Melnik Roderick12ORCID

Affiliation:

1. M3AI Laboratory, MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, 75 University Avenue West, Waterloo, Ontario, N2L 3C5, Canada

2. BCAM-Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E-48009 Bilbao, Spain

Abstract

Deep brain stimulation (DBS) can alleviate the movement disorders like Parkinson’s disease (PD). Indeed, it is known that aberrant beta (13-30 Hz) oscillations and the loss of dopaminergic neurons in the basal ganglia-thalamus (BGTH) and cortex characterize the akinesia symptoms of PD. However, the relevant biophysical mechanism behind this process still remains unclear. Based on the prior striatal inhibitory model, we propose an extended BGTH model incorporating medium spine neurons (MSNs) and fast-spiking interneurons (FSIs) along with the effect of DBS. We are focusing in this paper on an open-loop DBS mode, where the stimulation parameters stay constant independent of variations in the disease state, and modifications of parameters rely mainly on trial and error of medical experts. Additionally, we propose a novel combined model of the cerebellar-basal-ganglia thalamocortical network, MSNs, and FSIs and show new results that indicate that Parkinsonian oscillations in the beta-band frequency range emerge from the dynamics of such a network. Our model predicts that DBS can be used to suppress beta oscillations in globus pallidus pars interna (GPi) neurons. This research will help our better understanding of the changes in the brain activity caused by DBS, providing new insight for studying PD in the future.

Funder

Basque Government

Publisher

Hindawi Limited

Subject

Computational Mathematics,Computational Theory and Mathematics,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3