Analytic Treatment for Electrical MHD Non-Newtonian Fluid Flow over a Stretching Sheet through a Porous Medium

Author:

Adem Gossaye Aliy1ORCID

Affiliation:

1. Department of Mathematics, University of Gondar, Ethiopia

Abstract

In this study, an attempt has been made to investigate the mass and heat transfer effects in a BLF through a porous medium of an electrically conducting viscoelastic fluid subject to a transverse magnetic field in the existence of an external electric field, heat source/sink, and chemical reaction. It has been considered the effects of the electric field, viscous and Joule dissipations, radiation, and internal heat generation/absorption. Closed-form solutions for the boundary layer equations of viscoelastic, second-grade, and Walters’ B fluid models are considered. The method of the solution includes similarity transformation. The converted equations of thermal and mass transport are calculated using the optimal homotopy asymptotic method (OHAM). The solutions of the temperature field for both prescribed surface temperature (PST) and prescribed surface heat flux (PHF) are found. It is vital to remark that the interaction of the magnetic field is found to be counterproductive in enhancing velocity and concentration distribution, whereas the presence of chemical reaction, as well as a porous matrix with moderate values of the magnetic parameter, reduces the temperature and concentration fields at all points of the flow domain.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3