QoS Analysis for a Nonpreemptive Continuous Monitoring and Event-Driven WSN Protocol in Mobile Environments

Author:

Leyva-Mayorga Israel1,Rivero-Angeles Mario E.2,Carreto-Arellano Chadwick3,Pla Vicent1ORCID

Affiliation:

1. ITACA, Universitat Politècnica de València, 46022 Valencia, Spain

2. Communication Networks Laboratory, CIC-IPN, 07738 Mexico City, DF, Mexico

3. SEPI ESCOM-IPN, 07738 Mexico City, DF, Mexico

Abstract

Evolution in wireless sensor networks (WSNs) has allowed the introduction of new applications with increased complexity regarding communication protocols, which have to ensure that certain QoS parameters are met. Specifically, mobile applications require the system to respond in a certain manner in order to adequately track the target object. Hybrid algorithms that perform Continuous Monitoring (CntM) and Event-Driven (ED) duties have proven their ability to enhance performance in different environments, where emergency alarms are required. In this paper, several types of environments are studied using mathematical models and simulations, for evaluating the performance of WALTER, a priority-based nonpreemptive hybrid WSN protocol that aims to reduce delay and packet loss probability in time-critical packets. First, randomly distributed events are considered. This environment can be used to model a wide variety of physical phenomena, for which report delay and energy consumption are analyzed by means of Markov models. Then, mobile-only environments are studied for object tracking purposes. Here, some of the parameters that determine the performance of the system are identified. Finally, an environment containing mobile objects and randomly distributed events is considered. It is shown that by assigning high priority to time-critical packets, report delay is reduced and network performance is enhanced.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3