An Energy-Efficient Clustering Routing Protocol Based on a High-QoS Node Deployment with an Inter-Cluster Routing Mechanism in WSNs

Author:

Xu Kaida,Zhao Zhidong,Luo Yi,Hui Guohua,Hu Liqin

Abstract

Currently, wireless sensor network (WSN) protocols are mainly used to achieve low power consumption of the network, but there are few studies on the quality of services (QoS) of these networks. Coverage can be used as a measure of the WSN’s QoS, which can further reflect the quality of data information. Additionally, the coverage requirements of regional monitoring target points are different in real applications. On this basis, this paper proposes an energy-efficient clustering routing protocol based on a high-QoS node deployment with an inter-cluster routing mechanism (EECRP-HQSND-ICRM) in WSNs. First, this paper proposes formula definitions for information integrity, validity, and redundancy from the coverage rate and introduces a node deployment strategy based on twofold coverage. Then, in order to satisfy the uniformity of the distribution of cluster heads (CHs), the monitoring area is divided into four small areas centered on the base station (BS), and the CHs are selected in the respective cells. Finally, combined with the practical application of the WSN, this paper optimizes the Dijkstra algorithm, including: (1) nonessential paths neglecting considerations, and (2) a simultaneous introduction of end-to-end weights and path weights, achieving the selection of optimal information transmission paths between the CHs. The simulation results show that, compared with the general node deployment strategies, the deployment strategy of the proposed protocol has higher information integrity and validity, as well as lower redundancy. Meanwhile, compared with some classic protocols, this protocol can greatly reduce and balance network energy consumption and extend the network lifetime.

Funder

National Natural Science Foundation of China

Zhejiang Province Public Welfare Technology Application Research Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3