Sprayed Pyrolyzed ZnO Films with Nanoflake and Nanorod Morphologies and Their Photocatalytic Activity

Author:

Portillo-Vélez Nora S.12,Bizarro Monserrat1

Affiliation:

1. Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, 04510 Coyoacán, DF, Mexico

2. Posgrado en Ciencia e Ingeniería de Materiales, Universidad Nacional Autónoma de México, A.P. 70-360, 04510 Coyoacán, DF, Mexico

Abstract

There is an increasing interest on the application of ZnO nanorods in photocatalysis and many growth methods have been applied, in particular the spray pyrolysis technique which is attractive for large scale production. However it is interesting to know if the nanorod morphology is the best considering its photocatalytic activity, stability, and cost effectiveness compared to a nonoriented growth. In this work we present a systematic study of the effect of the precursor solution (type of salt, solvent, and concentration) on the morphology of sprayed ZnO films to obtain nanoflakes and nanorods without the use of surfactants or catalysts. The surface properties and structural characteristics of these types of films were investigated to elucidate which morphology is more favorable for photocatalytic applications. Wettability and photocatalytic experiments were carried out in the same conditions. After UV irradiation both morphologies became hydrophilic and achieved a dye discoloration efficiency higher than 90%; however, the nanoflake morphology provided the highest photocatalytic performance (99% dye discoloration) and stability and the lowest energy consumption during the synthesis process. The surface-to-volume ratio revealed that the nanoflake morphology is more adequate for photocatalytic water treatment applications and that the thin nanorods should be preferred over the large ones.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3