Improving TIGGE Precipitation Forecasts Using an SVR Ensemble Approach in the Huaihe River Basin

Author:

Cai Chenkai1ORCID,Wang Jianqun1ORCID,Li Zhijia1

Affiliation:

1. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China

Abstract

Recently, the use of the numerical rainfall forecast has become a common approach to improve the lead time of streamflow forecasts for flood control and reservoir regulation. The control forecasts of five operational global prediction systems from different centers were evaluated against the observed data by a series of area-weighted verification and classification metrics during May to September 2015–2017 in six subcatchments of the Xixian Catchment in the Huaihe River Basin. According to the demand of flood control safety, four different ensemble methods were adopted to reduce the forecast errors of the datasets, especially the errors of missing alarm (MA), which may be detrimental to reservoir regulation and flood control. The results indicate that the raw forecast datasets have large missing alarm errors (MEs) and cannot be directly applied to the extension of flood forecasting lead time. Although the ensemble methods can improve the performance of rainfall forecasts, the missing alarm error is still large, leading to a huge hazard in flood control. To improve the lead time of the flood forecast, as well as avert the risk from rainfall prediction, a new ensemble method was proposed on the basis of support vector regression (SVR). Compared to the other methods, the new method has a better ability in reducing the ME of the forecasts. More specifically, with the use of the new method, the lead time of flood forecasts can be prolonged to at least 3 d without great risk in flood control, which corresponds to the aim of flood prevention and disaster reduction.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3