Quantitative Investigation on the Contributing Factors to the Contact Angle of the CO2/H2O/Muscovite Systems Using the Frumkin-Derjaguin Equation

Author:

Shiga Masashige12ORCID,Aichi Masaatsu2,Sorai Masao1

Affiliation:

1. Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

2. Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan

Abstract

It is significant to understand the values and trends of the contact angle of CO2/brine/mineral systems to evaluate and model the sealing performance of CO2 Geo-Sequestration (CGS). It has been reported that the contact angles of the CO2/brine/muscovite systems increase as pressure increases from ambient conditions to reservoir conditions. This trend suggests a decrease in seal integrity. In this paper, we studied its mechanisms and the contributing factors by calculating the Frumkin-Derjaguin equation, which is based on the thermodynamics of the interfacial system. Results show that a decrease of pH is a critical factor for the wettability alteration at a lower pressure range (0.1 MPa to 3.0 MPa). In contrast, the increase of CO2 density and the decrease in the interfacial tension of CO2/brine are significant for the wettability change at a higher pressure range (3.0 MPa to 10.0 MPa). Also, sensitivity analysis shows that the contact angle is sensitive to the interfacial tension of CO2/brine and the coefficients of hydration forces.

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3