Effect of equilibrium contact angle on water equilibrium film thickness for the carbon dioxide–brine–mineral system based on surface force theory

Author:

Amadu Mumuni,Miadonye Adango

Abstract

AbstractThe thickness of the thin wetting film depends on disjoining pressure forces, and it evolves with pH evolution due to brine acidification at the physical and chemical conditions of geological carbon dioxide storage becoming thinner in response to dewetting. In the literature, molecular dynamic simulation (MDS) studies have been employed to understand the effect of pressure/capillary pressure on the thin wetting film evolution. In this paper, a theoretical approach based on the Frumkin–Derjaguin Equation (FDE), models of electric double layer repulsion, and van der Waals forces have been used for the calculation of the wetting film thickness. The approach excluded hydration forces contribution to disjoining pressure forces due partly to its poorly understood nature, and partly to the high salinity conditions encountered in geological carbon storage. Due to its promising global storage capacity compared to other lithologies, the carbon dioxide–brine–silica systems was chosen to simulate sandstone saline aquifers. The validation of the model benefited much from literature resources on data and a universal model of carbon dioxide–brine interfacial tension. Calculated results confirm pH-induced dewetting and they follow trends controlled by pH and pressure as found in the literature. The novelty of the paper can be seen from the fact that it has demonstrated a theoretical supplement to MDS studies in addition to justifying the fundamental utility and versatility of the FDE. Moreover, the paper links for the first time, a transcendental equation to the thin wetting film theory encountered in the carbon dioxide–solid–brine system found in geological carbon storage.

Funder

Cape Breton University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3