On-Chip Antenna Design Using the Concepts of Metamaterial and SIW Principles Applicable to Terahertz Integrated Circuits Operating over 0.6–0.622 THz

Author:

Althuwayb Ayman A.1ORCID

Affiliation:

1. Electrical Engineering Department, Jouf University, Sakaka, Aljouf 72388, Saudi Arabia

Abstract

This research work presents the investigation of realizing an on-chip antenna based on the metamaterial concept, which is working over the terahertz (THz) band for applications in integrated circuits. The proposed on-chip antenna is constructed of five stacked layers of polyimide and aluminum as top and bottom substrates, radiation patches, ground plane, and feed line. The four square-shaped radiation patches are implemented on the 50  μ m top-polyimide substrate, and the feed line is realized on the 50  μ m bottom-polyimide layer by designing the simple square microstrip lines, which are all connected to each other and then excited by waveguide port. The ground plane including a coupling square slot has sandwiched between the top- and bottom-polyimide layers. The coupling square slot etched on the ground plane is exactly placed under the patch to optimum transfer the electromagnetic signal from the bottom feed line to the top radiation patch. To achieve high performance parameters without increasing the antenna's physical dimensions, the metamaterial and substrate integrated waveguide properties have been applied to the antenna structure by implementing linear tapered slots on the patch top surfaces and metallic via holes throughout the middle ground plane connecting top and bottom substrates to each other. The slots play the role of series left-handed (LH) capacitors (CL) and the via holes act as shunt LH inductors (LL). The overall dimension of the proposed metamaterial-based on-chip antenna is 1000 × 1000 × 100 μm3. This antenna can cover the frequency band from 0.6 THz to 0.622 THz, which is equal to 20 GHz bandwidth. The radiation gain and efficiency across the operating frequency band varies from 1.1 dBi to 1.8 dBi, and from 58% to 60.5%, respectively. The results confirm that the proposed on-chip antenna with compact dimensions, wide bandwidth over the terahertz domain, low profile, cost effective, simple configuration, and easy to manufacture can be potentially appropriate for terahertz integrated circuits.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Reference33 articles.

1. An overview of terahertz antennas

2. A Multiport Chip-Scale Dielectric Resonator Antenna for CMOS THz Transmitters

3. Miniaturized-Element Frequency Selective Surface Metamaterials: A Solution to Enhance Radiation of RFICs

4. A 320 GHz Octagonal Shorted Annular Ring On-Chip Antenna Array

5. Ozan Dogan GurbuzHigh-Efficiency On-Chip Antennas for Mm-Wave and THz Frequencies and Tunable RF MEMS Circuits for Wireless Communications2015San Diego, CA, USAUC San Diego Electronic Theses and DissertationsPh.D. dissertation

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3