Evaporation Rate Prediction Using Advanced Machine Learning Models: A Comparative Study

Author:

Al Sudani Zainab Abdulelah1ORCID,Salem Golam Saleh Ahmed2ORCID

Affiliation:

1. Water Resources Department, College of Engineering, University of Baghdad, Baghdad, Iraq

2. Department of Electrical and Electronic Engineering, Trust University, Nobogram Road, Barishal-8200, Bangladesh

Abstract

Accurately estimating the amount of evaporation loss is necessary for scheduling and calculating irrigation water requirements. In this study, four machine learning (ML) modeling approaches, extreme learning machine (ELM), gradient boosting machine (GBM), quantile random forest (QRF), and Gaussian process regression (GPR), have been developed to estimate the monthly evaporation loss over two stations located in Iraq. Monthly climatical parameters have been used as an input variable for simulating the evaporation rate. Several statistical measures (e.g., mean absolute error (MAE), correlation coefficient (R), mean absolute percentage error (MAPE), and modified index of agreement (Md)), as well as graphical inspection, were used to compare the performances of the applied models. The results showed that the GBM model has much better performance in predicting monthly evaporation over two stations compared to other applied models. For the first case study which was in Diyala, the results showed a prediction enhancement in terms of MAE and RMSE by 7.17%, 21.01%; 16.51%, 15.74%; and 23.14%, 26.64%; using GBM compared to ELM, GPR, and QRF, respectively. However, for the second case study (in Erbil), the prediction enhancement was improved in terms of reduction of MAE and RMSE by 10.88%, 9.24%; 15.24%, 5%; and 16.06%, 15.76%; respectively, compared to ELM, GPR, and QRF models. The results of the proposed GMBM model can therefore assist local stakeholders in the management of water resources.

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3