The Importance of Fatty Acid Precision Nutrition: Effects of Dietary Fatty Acid Composition on Growth, Hepatic Metabolite, and Intestinal Microbiota in Marine Teleost Trachinotus ovatus

Author:

Zhang Guanrong1,Ning Lijun1,Jiang Kunsheng1,Zheng Jun1,Guan Junfeng1,Li Hengji1,Ma Yongcai1,Wu Kun1,Xu Chao1,Xie Dizhi1,Chen Fang1,Wang Shuqi2,Li Yuanyou1ORCID

Affiliation:

1. University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on MBCE, College of Marine Sciences, South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 Guangdong, China

2. Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China

Abstract

Our recent study demonstrated that diet with blend oil (named BO1) as lipid, which is designed on the base of essential fatty acid requirement of Trachinotus ovatus, achieved good performance. Here, to confirm its effect and investigate the mechanism, three isonitrogenous (45%) and isolipidic (13%) diets (D1-D3) only differing in dietary lipids, which were, respectively, fish oil (FO), BO1, and blend oil 2 (BO2) consisting of FO and soybean oil at 2 : 3, were formulated and used to feed the T. ovatus juveniles (average initial weight: 7.65 g) for 9 weeks. The results showed that the weight gain rate of fish fed D2 was higher than that of fish fed D3 ( P < 0.05 ) and had no significant difference from that of fish fed D1 ( P > 0.05 ). Correspondingly, compared with the D3 group, fish of the D2 group exhibited better oxidative stress parameters such as lower serum malondialdehyde content and inflammatory indexes in the liver such as the lower expression level of genes encoding four interleukin proteins and tumor necrosis factor α, as well as higher hepatic immune-related metabolites such as valine, gamma-aminobutyric acid, pyrrole-2-carboxylic acid, tyramine, l-targinine, p-synephrine, and butyric acid ( P < 0.05 ). Furthermore, the intestinal probiotic (Bacillus) proportion was significantly higher, while the pathogenic bacteria (Mycoplasma) proportion was significantly lower in the D2 group than that in the D3 group ( P < 0.05 ). The main differential fatty acids of diet D2 were close to those of D1, while the levels of linoleic acid and n-6 PUFA, as well as the ratio of DHA/EPA of D3, were higher than those of D1 and D2. These results indicated that the better performance of D2 such as enhancing growth, reducing oxidative stress, and improving immune responses and intestinal microbial communities in T. ovatus may be mainly due to the good fatty acid composition of BO1, which indicated the importance of fatty acid precision nutrition.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3