Tetramethylpyrazine Improves Monocrotaline-Induced Pulmonary Hypertension through the ROS/iNOS/PKG-1 Axis

Author:

Yang Dong-Peng123,Dong Wen-Peng4,Yang Yong-Chao5,Zeng Yuan-Yuan36,Liu Ying7,Dong Zhu8,Ma Xi-Miao1,Cao Yi-Qiu1,Bai Yi-Zhou8,Yang Bo8,Wang Xiao-Wu38ORCID

Affiliation:

1. The First School of Clinical Medicine, Southern Medical University, Guangzhou, China

2. Department of Cardiovascular Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China

3. Department of Cardiovascular Surgery, People’s Liberation Army General Hospital of Southern Theater Command, Guangzhou, China

4. Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Shushan District, Hefei 230032, China

5. Guangdong Cardiovascular Institute, WHO Collaborating Center for Research and Training in Cardiovascular Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China

6. Guangzhou University of Chinese Medicine, Guangzhou 510010, China

7. Jiangmen Wuyi Hospital of TCM, Jiangmen, Guangdong 529000, China

8. Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China

Abstract

Background. Tetramethylpyrazine (TMP), a potent anti-free radical and anti-inflammations substance, has been demonstrated to possess a direct vessel relaxation property. This study aimed to evaluate the effect of TMP treatment in pulmonary hypertension (PH) and test the hypothesis that TMP prevents or reverses the process of PH. Methods. Rats (n = 36) injected with 50 mg/kg of monocrotaline (MCT) subcutaneously 4 weeks to develop PH were then randomized to TMP (5 mg/kg per day) for another 4 weeks. Hemodynamics was evaluated via the right ventricle. Pulmonary vessels structural remodeling and inflammation were examined by histologic and transmission electron microscopy observation. The expression of inducible nitric oxide synthase (iNOS) and cGMP-dependent protein kinases 1 (PKG-1) was detected by immunohistochemical staining and Western blot. Generation of reactive oxygen species (ROS) and antioxidation species was measured by biochemical analyses. Results. MCT increased PH and right ventricle hypertrophy. TMP alleviated pulmonary arterial pressure elevation, leukocyte infiltration, and structural remodeling of pulmonary arterials induced by MCT successfully. TMP treatment significantly increased the PKG-1 expression and suppressed the iNOS expression. The activity of superoxide dismutase (SOD), glutathione peroxidase (GSH), and catalase (CAT) was significantly higher than control group, while malondialdehyde (MDA) levels were lower compared with MCT group. Conclusion. TMP can suppress established MCT-induced PH through the ROS/iNOS/PKG axis. The underlying mechanisms may be associated with its anti-inflammatory, antioxidant, and antiproliferative properties in pulmonary arterial.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3