Protective effect of ligustrazine on oxidative stress and apoptosis following testicular torsion in rats

Author:

Chen Songmao,Liao Zhengjian,Zheng Tingting,Zhu Yuanfan,Ye Liefu

Abstract

AbstractTesticular torsion is a common urologic emergency and one of the causes of infertility in males. It has been reported that ligustrazine may decrease oxidative stress and reduce ischemia–reperfusion injury. This study aims to investigate the protective effect of ligustrazine in ischemia–reperfusion injury after testicular torsion-detorsion. First, 40 rats were randomly and equally divided into TMP (Ligustrazine) group, the Testicular torsion (T/D) group, the Sham (Sham operation) group, and Control group. The left testis of rats in the TMP and T/D group was rotated for 2 h. The TMP group was intraperitoneally injected with ligustrazine solution and the T/D and the Sham groups were injected with normal saline. The left testes of four groups were obtained for assay on the 4th day after the operation. Average level of superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) were higher in Sham and Control groups than T/D group and TMP group. Conversely, average level of malondialdehyde (MDA) and reactive oxygen species (ROS) was lower in Sham and Control groups than T/D group and TMP group. In contrast with the T/D group, SOD, GPX, and CAT enzymatic activities increased, whereas MDA and ROS content decreased in the TMP group (P < 0.05). Microscopic observation showed that the testicular tissue of the Sham and Control groups were basically normal. The TMP and T/D groups had significant testicular tissue damage, whereas the TMP group had less damage and apoptosis than the T/D group. The apoptotic index of germ cells in the TMP group (13.05 ± 4.41) was lower than the T/D group (30.23 ± 11.31) (P < 0.05) and higher (P < 0.05) than the Sham group (0.56 ± 0.29). So we found that Ligustrazine lowered ischemia–reperfusion injury after testicular torsion-detorsion by decreasing the reactive oxygen species and suppressing apoptosis.

Funder

Startup Fund For scientific research of Fujian Medical University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3