Interval Prediction Method for Solar Radiation Based on Kernel Density Estimation and Machine Learning

Author:

Zhao Meiyan1,Zhang Yuhu2,Hu Tao1ORCID,Wang Peng3

Affiliation:

1. School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

2. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China

3. Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, 212013, China

Abstract

Precise global solar radiation (GSR) data are indispensable to the design, planning, operation, and management of solar radiation utilization equipment. Some examples prove that the uncertainty of the prediction of solar radiation provides more value than deterministic ones in the management of power systems. This study appraises the potential of random forest (RF), V-support vector regression (V-SVR), and a resilient backpropagation artificial neural network (Rprop-ANN) for daily global solar radiation (DGSR) point prediction from average relative humidity (RHU), daily average temperature (AT), and daily sunshine duration (SD). To acquire more accurate predictions of DGSR and examine the influence of historical DGSR on the performance of point prediction models, two different model inputs are considered: (1) three meteorological variables and (2) the lags of DGSR and three meteorological variables. Then, two interval prediction methods are developed by introducing the KDE to out-of-bag (OOB), introducing kernel density estimation (KDE) to split conformal (SC) based on the three machine learning models. The two methods for interval prediction are denoted as OOB-KDE and SC-KDE. The mean absolute error (MAE), mean relative error (MRE), and Kendall rank correlation (Kendall) are used to assess the point prediction models. The performance of interval prediction methods is evaluated by the prediction interval coverage probability (PICP), prediction interval normalized average width (PINAW), and coverage width criteria (CWC). The following conclusions are drawn from this study. First, the V-SVR model performs best with the lowest mean absolute error (MAE) of 0.016 and mean relative error (MRE) of 0.001. Second, the lags of DGSR improve the prediction accuracy by about 30%. Third, the OOB-KDE and SC-KDE methods improved the quality of the prediction interval (PI). OOB-KDE improved CWC by 81%, and SC-KDE improved CWC by 99.99%. Fourth, the best interval prediction result is obtained using the SC-KDE method using the V-SVR model. The average difference between its PICP and prediction interval nominal coverage (PINC) is only 3% of the PINC, and its PINAW is less than 0.007.

Funder

Beijing Natural Science Foundation

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3