Affiliation:
1. School of Mathematics and Statistics, Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan 430079, China
2. School of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China
Abstract
In this paper, we consider the asymptotic behavior of solutions to the p-system with time-dependent damping on the half-line R+=0,+∞, vt−ux=0,ut+pvx=−α/1+tλu with the Dirichlet boundary condition ux=0=0, in particular, including the constant and nonconstant coefficient damping. The initial data v0,u0x have the constant state v+,u+ at x=+∞. We prove that the solutions time-asymptotically converge to v+,0 as t tends to infinity. Compared with previous results about the p-system with constant coefficient damping, we obtain a general result when the initial perturbation belongs to H3R+×H2R+. Our proof is based on the time-weighted energy method.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献