Abstract
<abstract><p>We are concerned with the space-time decay rate of high-order spatial derivatives of solutions for 3D compressible Euler equations with damping. For any integer $ \ell\geq3 $, Kim (2022) showed the space-time decay rate of the $ k(0\leq k\leq \ell-2) $th-order spatial derivative of the solution. By making full use of the structure of the system, and employing different weighted energy methods for $ 0\leq k \leq \ell-2, k = \ell-1, k = \ell $, it is shown that the space-time decay rate of the $ (\ell-1) $th-order and $ \ell $th-order spatial derivative of the strong solution in weighted Lebesgue space $ L_\sigma^2 $ are $ t^{-\frac{3}{4}-\frac{\ell-1}{2}+\frac{\sigma}{2}} $ and $ t^{-\frac{3}{4}-\frac{\ell}{2}+\frac{\sigma}{2}} $ respectively, which are totally new as compared to that of Kim (2022) <sup>[<xref ref-type="bibr" rid="b1">1</xref>]</sup>.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference28 articles.
1. J. Kim, Space-time decay rate for 3D compressible Euler equations with damping, J. Evol. Equations, 22 (2022), 1424–3199. https://doi.org/10.1007/s00028-022-00830-6
2. L. Hsiao, T. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Commun. Math. Phys., 143 (1992), 599–605. http://projecteuclid.org/euclid.cmp/1104249084
3. L. Hsiao, T. Liu, Nonlinear diffusive phenomena of nonlinear hyperbolic systems, Chin. Ann. Math. Ser. B, 14 (1993), 465–480.
4. L. Hsiao, D. Serre, Global existence of solutions for the system of compressible adiabatic flow through porous media, SIAM J. Math. Anal., 27 (1996), 70–77. https://doi.org/10.1137/S0036141094267078
5. K. Nishihara, W. Wang, T. Yang, $L_p$-convergence rate to nonlinear diffusion waves for $p$-system with damping, J. Differ. Equations, 161 (2000), 191–21. https://doi.org/10.1006/jdeq.1999.3703