Synthesis and Antiproliferative Activity of Some Quinoline and Oxadiazole Derivatives

Author:

Ahsan Mohamed Jawed1ORCID,Shastri Sunil1,Yadav Rita1,Hassan Mohd. Zaheen2,Bakht Mohammed Afroz3ORCID,Jadav Surender Singh4,Yasmin Sabina4ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Ambabari Circle, Jaipur, Rajasthan 302 039, India

2. School of Chemical Science, University Sains Malaysia, Penang 118 00, Malaysia

3. Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 11323, Al-Kharj, Saudi Arabia

4. Department of Pharmaceutical Chemistry, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835 215, India

Abstract

In continuance of our search for newer antiproliferative agents we report herein the synthesis and antiproliferative studies of two series (5a–j and 10a–c) of heterocyclic compounds. All the new compounds were characterized by IR, NMR, and mass spectral data. The antiproliferative activity of 10 compounds (5a–j) was carried out on HeLa (cervix cancer cell line) and MDA-MB-435 (melanoma) and LC50, TGI, and GI50 were calculated, while the antiproliferative activity of 3 compounds (10a–c) was carried out against nine different panels of nearly 60 cell lines (NCI-60) according to the National Cancer Institute (NCI US) Protocol at 10 μM. 1-(7-Hydroxy-4-methyl-2-oxoquinolin-1(2H)-yl)-3-(4-methoxylphenyl)urea (5j) was found to have antiproliferative activity with GI50 of 35.1 μM against HeLa (cervix cancer cell line) and 60.4 μM against MDA-MB-435 (melanoma), respectively. The compounds 10a, 10b, and 10c showed antiproliferative activity with comparatively higher selectivity towards HOP-92 (Non-Small Cell Lung Cancer) with percent growth inhibitions (GIs) of 34.14, 35.29, and 31.59, respectively.

Funder

Department of Science and Technology, Ministry of Science and Technology

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3