Affiliation:
1. Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan
Abstract
Hydrogenated microcrystalline silicon-germanium (μc-Si1-xGex:H) alloys were developed for application in Si-based thin-film solar cells. The effects of thegermane concentration(RGeH4)and thehydrogen ratio(RH2)on theμc-Si1-xGex:H alloys and the corresponding single-junction thin-film solar cells were studied. The behaviors of Ge incorporation in a-Si1-xGex:H andμc-Si1-xGex:H were also compared. Similar to a-Si1-xGex:H, the preferential Ge incorporation was observed inμc-Si1-xGex:H. Moreover, a higherRH2significantly promoted Ge incorporation for a-Si1-xGex:H, while the Ge content was not affected byRH2inμc-Si1-xGex:H growth. Furthermore, to eliminate the crystallization effect, the 0.9 μm thick absorbers with a similar crystalline volume fraction were applied. With the increasingRGeH4, the accompanied increase in Ge content ofμc-Si1-xGex:H narrowed the bandgap and markedly enhanced the long-wavelength absorption. However, the bias-dependent EQE measurement revealed that too much Ge incorporation in absorber deteriorated carrier collection and cell performance. With the optimization ofRH2andRGeH4, the single-junctionμc-Si1-xGex:H cell achieved an efficiency of 5.48%, corresponding to the crystalline volume fraction of 50.5% and Ge content of 13.2 at.%. Compared toμc-Si:H cell, the external quantum efficiency at 800 nm had a relative increase by 33.1%.
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献