Short-Term Daily Univariate Streamflow Forecasting Using Deep Learning Models

Author:

Wegayehu Eyob Betru1ORCID,Muluneh Fiseha Behulu1

Affiliation:

1. School of Civil and Environmental Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Addis Ababa, Ethiopia

Abstract

Hydrological forecasting is one of the key research areas in hydrology. Innovative forecasting tools will reform water resources management systems, flood early warning mechanisms, and agricultural and hydropower management schemes. Hence, in this study, we compared Stacked Long Short-Term Memory (S-LSTM), Bidirectional Long Short-Term Memory (Bi-LSTM), and Gated Recurrent Unit (GRU) with the classical Multilayer Perceptron (MLP) network for one-step daily streamflow forecasting. The analysis used daily time series data collected from Borkena (in Awash river basin) and Gummera (in Abay river basin) streamflow stations. All data sets passed through rigorous quality control processes, and null values were filled using linear interpolation. A partial autocorrelation was also applied to select the appropriate time lag for input series generation. Then, the data is split into training and testing datasets using a ratio of 80 : 20, respectively. Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and coefficient of determination (R2) were used to evaluate the performance of the proposed models. Finally, the findings are summarized in model variability, lag time variability, and time series characteristic themes. As a result, time series characteristics (climatic variability) had a more significant impact on streamflow forecasting performance than input lagged time steps and deep learning model architecture variations. Thus, Borkena’s river catchment forecasting result is more accurate than Gummera’s catchment forecasting result, with RMSE, MAE, MAPE, and R2 values ranging between (0.81 to 1.53, 0.29 to 0.96, 0.16 to 1.72, 0.96 to 0.99) and (17.43 to 17.99, 7.76 to 10.54, 0.16 to 1.03, 0.89 to 0.90) for both catchments, respectively. Although the performance is dependent on lag time variations, MLP and GRU outperform S-LSTM and Bi-LSTM on a nearly equal basis.

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3