Application of a Multiple Regression Model for the Simultaneous Measurement of Refractive Index and Temperature Based on an Interferometric Optical System

Author:

Guzman-Chavez Ana Dinora1ORCID,Vargas-Rodriguez Everardo1ORCID

Affiliation:

1. Departamento de Estudios Multidisciplinarios, Universidad de Guanajuato, Yuriria, 38940, Mexico

Abstract

Interferometric optical systems have been proposed for implementing dual-parameter optical sensors. For this type of sensors, the sensitivity matrix equation is generally used to determine the parameters to be measured based on the sensitivity of each parameter to one particular feature of the output reflective spectrum of the interferometric system. One of the disadvantages of this method is that the measurement ranges will be very short if the sensitivities are not linear or if these present cross-sensitivity. In this work, a multiple regression model for the simultaneous detection of refractive index and temperature based on an interferometric optical sensor is proposed. Here, the mathematical model is a weighted sum of features used to estimate the values of two response variables. These features are functions of an initial set of 27 explanatory variables whose values were extracted of the output reflective spectrum of the interferometric system. Besides, in order to sustenance the model application, the sensor was modeled and experimentally carried out. Three cases were studied: the estimation of temperature at different refractive indices, the estimation of temperature when refractive index is equal to one, and the estimation of refractive index at different temperatures. For each one of these cases, an optimal basis of functions was founded with the algorithm proposed and used to estimate the values of the response variables. Besides, a technique to reduce the initial set of variables was implemented. Finally, for the experimental data, For each one of these cases, an optimal basis of functions was founded with the algorithm 1 proposed and used to estimate the values of the response variables.

Funder

Universidad de Guanajuato

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3