Improving Spectrum Sensing for Cognitive Radio Network Using the Energy Detection with Entropy Method

Author:

Usman Mustefa Badri1ORCID,Singh Ram Sewak1,Mishra Satyasis1,Rathee Davinder Singh1

Affiliation:

1. Department of Electronics and Communication Engineering, School of Electrical Engineering and Computing Office of Graduate Studies, Adama Science and Technology University, Adama 1888, Ethiopia

Abstract

Spectrum is one of the world’s most highly regulated and limited natural resources. Cognitive Radio (CR) is a cutting-edge technology that aims to solve the future spectrum shortage issue in wireless communication systems. CR is one of the most widely used methods for maximizing the use of the wireless spectrum. Spectrum sensing is a critical step in discovering spectrum gaps in CR. Matching filter detection, energy detection (ED), cyclostationary detection, correlation coefficient detection, and wavelet detection are some of the frequency band sensing techniques. ED has received the most attention from many researchers because of its convenience and low computation complexity. However, noise instability, or the random and unavoidable variation of noise that exists in any communication link, greatly decreases the output of ED, especially whenever the signal-to-noise ratio (SNR) is poor. As a result, this research provides an exciting spectrum sensing option known as the energy detection with entropy method technique. In contrast to conventional ED, the proposed energy detection with entropy method offers better sensing performance in low SNR circumstances. According to simulation results, the proposed method has a significant performance improvement of about 18.58% when compared to CED at a given SNR of −18 dB.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3