Rényi Entropy-Based Spectrum Sensing in Mobile Cognitive Radio Networks Using Software Defined Radio

Author:

Cadena Muñoz ErnestoORCID,Pedraza Martínez Luis FernandoORCID,Hernandez Cesar Augusto

Abstract

A very important task in Mobile Cognitive Radio Networks (MCRN) is to ensure that the system releases a given frequency when a Primary User (PU) is present, by maintaining the principle to not interfere with its activity within a cognitive radio system. Afterwards, a cognitive protocol must be set in order to change to another frequency channel that is available or shut down the service if there are no free channels to be found. The system must sense the frequency spectrum constantly through the energy detection method which is the most commonly used. However, this analysis takes place in the time domain and signals cannot be easily identified due to changes in modulation, power and distance from mobile users. The proposed system works with Gaussian Minimum Shift Keying (GMSK) and Orthogonal Frequency Division Multiplexing (OFDM) for systems from Global System for Mobile Communication (GSM) to 5G systems, the signals are analyzed in the frequency domain and the Rényi-Entropy method is used as a tool to distinguish the noise and the PU signal without prior knowledge of its features. The main contribution of this research is that uses a Software Defined Radio (SDR) system to implement a MCRN in order to measure the behavior of Primary and Secondary signals in both time and frequency using GNURadio and OpenBTS as software tools to allow a phone call service between two Secondary Users (SU). This allows to extract experimental results that are compared with simulations and theory using Rényi-entropy to detect signals from SU in GMSK and OFDM systems. It is concluded that the Rényi-Entropy detector has a higher performance than the conventional energy detector in the Additive White Gaussian Noise (AWGN) and Rayleigh channels. The system increases the detection probability (PD) to over 96% with a Signal to Noise Ratio (SNR) of 10dB and starting 5 dB below energy sensing levels.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3