Affiliation:
1. Chemistry Institute for Functional Materials, Pusan National University, Pusan, Republic of Korea
Abstract
We present the result of molecular dynamics (MD) simulations to calculate the molar conductivity
of NaCl in SPC/E water at 25°C as a function of NaCl concentration (c) using Ewald sums employing a velocity Verlet algorithm. It is found that the MD result for Λm with Ewald sum parameter κ = 0.10 Å−1 gives the closest one to the experimental data and that the obtained radial distribution functions
(r) with κ = 0.10 Å−1 show a dramatic change with a very deep minimum of
(r) and, as a result, sharp maxima of
(r) and
(r) at the distance 9.95 Å, which indicates a characteristic of ionic atmosphere, the basis of the Debye–Hückel theory of ionic solutions. The static and dynamic properties of NaCl (aq) solutions are analyzed in terms of radial distribution functions, hydration numbers, coordination numbers around Na+ and Cl−, residence times of water around Na+ and Cl−, water diffusion, and ion-ion electrostatic energies to explain the behavior of the molar conductivity Λm of NaCl obtained from our MD simulations.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献