Pore-like diffusion barriers in murine cardiac myocytes

Author:

Deisl Christine,Chung Jay A.,Hilgemann Donald W.

Abstract

AbstractUsing both optical and electrical methods, we document that solute diffusion in the cytoplasm of BL6 murine cardiac myocytes becomes restricted >30-fold as molecular weight increases from 30 to 2000, roughly as expected for pores with dimensions of cardiac porin channels. The Bodipy-FL ATP analogue diffuses ∼50-fold slower in BL6 cardiac cytoplasm than in free water. From several fluorophores analyzed, our estimates of bound fluorophore fractions range from 0.1 for a 2 kD FITC-labeled polyethylene glycol to 0.93 for sulforhodamine. We estimate that diffusion coefficients of unbound fluorophores range from 0.5 to 8 x 10-7cm2/s. Analysis of Na/K pump and veratridine-modified Na channel currents confirms that Na diffusion is nearly unrestricted (time constant for equilibration with the pipette tip, ∼20 s). Using three different approaches, we estimate that ATP diffuses 8 to 10-times slower in the cytoplasm of BL6 myocytes than in free water. To address whether restrictions are caused more by cytoplasmic protein or membrane networks, we verified first that a protein gel, 10 gram% gelatin, restricts solute diffusion with strong dependence on molecular weight. Solute diffusion in membrane-extracted cardiac myofilaments, confined laterally by suction into large-diameter pipette tips, is however less restricted than in intact myocytes. Notably, myofilaments from equivalently extracted skeletal (diaphragm) myocytes restrict diffusion less than cardiac myofilaments. Solute diffusion in myocytes with sarcolemma permeabilized by β-escin (80 µM) is similarly restricted as in intact myocytes. Diffusion restriction in cardiac myocytes is strain-dependent, being about two-fold greater in BL6 myocytes than in myocytes with a CD1/J6/129svJ background. Furthermore, diffusion is 2.5-fold more restricted in CD1/J6/129svJ myocytes lacking the mitochondrial porin, Vdac1, than in WT CD1/J6/129svJ myocytes. We conclude that both myofilaments and mitochondria networks restrict diffusion in cardiac myocytes. As a result, long-range solute diffusion may preferentially occur via passage through porin channels and intramembrane mitochondrial spaces, where diffusion is less restricted than in myofilament spaces.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3