The Influence of Nanoparticle on Vaccine Responses against Bacterial Infection

Author:

Bagheri-Josheghani Sareh12ORCID,Bakhshi Bita1ORCID,Najar-peerayeh Shahin1

Affiliation:

1. Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

2. Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran

Abstract

Nowadays, nanovaccine is considered as an evolving method in the field of vaccination to induce immunity in the human body against various diseases, including bacterial or viral diseases as well as virulent tumors. Nanovaccines are more efficient than traditional vaccines since they could potentially induce both humoral and cellular immune reactions. Various studies have shown that nanoparticles with multiple compounds have been designed as delivery systems or as adjuvants for vaccines. Nanoparticles could function as a drug delivery tool, as an adjuvant to promote antigen processing, and as an immune modulator to induce immune responses. These nanoparticles generate immune responses through activating immune cells as well as through the production of antibody responses. Design engineering of nanoparticles (NPs) used to produce nanovaccines to induce immunity in the human body needs comprehensive information about the ways they interact with the component of immune system. Challenges remain due to the lack of sufficient and comprehensive information about the nanoparticles' mode of action. Several studies have described the interactions between various classes of nanoparticles and the immune system in the field of prevention of bacterial infections. The results of some studies conducted in recent years on the interaction between nanoparticles and biosystems have considerably affected the methods used to design nanoparticles for medical applications. In this review, NPs’ characteristics influencing their interplay with the immune system were discussed in vivo. The information obtained could lead to the development of strategies for rationalizing the design of nanovaccines in order to achieve optimum induction of immune response.

Funder

Tarbiat Modares University

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3