Bilosomes as Nanocarriers for the Drug and Vaccine Delivery against Gastrointestinal Infections: Opportunities and Challenges

Author:

Zarenezhad Elham1ORCID,Marzi Mahrokh1,Abdulabbas Hussein T.2ORCID,Jasim Saade Abdalkareem3,Kouhpayeh Seyed Amin4,Barbaresi Silvia5,Ahmadi Shiva1,Ghasemian Abdolmajid1

Affiliation:

1. Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa P.O. Box 7461686688, Iran

2. Department of Medical Microbiology, Medical College, Al Muthanna University, Al Muthanna P.O. Box 07835544777, Iraq

3. College of Applied Science, University of Fallujah, Fallujah, Anbar 31002, Iraq

4. Department of Pharmacology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa P.O. Box 7461686688, Iran

5. Department of Movement and Sports Sciences, Ghent University, 9000 Ghent, Belgium

Abstract

The gastrointestinal tract (GIT) environment has an intricate and complex nature, limiting drugs’ stability, oral bioavailability, and adsorption. Additionally, due to the drugs’ toxicity and side effects, renders are continuously seeking novel delivery systems. Lipid-based drug delivery vesicles have shown various loading capacities and high stability levels within the GIT. Indeed, most vesicular platforms fail to efficiently deliver drugs toward this route. Notably, the stability of vesicular constructs is different based on the different ingredients added. A low GIT stability of liposomes and niosomes and a low loading capacity of exosomes in drug delivery have been described in the literature. Bilosomes are nonionic, amphiphilic, flexible surfactant vehicles that contain bile salts for the improvement of drug and vaccine delivery. The bilosomes’ stability and plasticity in the GIT facilitate the efficient carriage of drugs (such as antimicrobial, antiparasitic, and antifungal drugs), vaccines, and bioactive compounds to treat infectious agents. Considering the intricate and harsh nature of the GIT, bilosomal formulations of oral substances have a remarkably enhanced delivery efficiency, overcoming these conditions. This review aimed to evaluate the potential of bilosomes as drug delivery platforms for antimicrobial, antiviral, antifungal, and antiparasitic GIT-associated drugs and vaccines.

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3