Using Bagasse and Aluminum Sulfate-Modified Bagasse as Adsorbents for Treatment of Industrial Cutting Fluid Wastewater in Laboratory and Pilot Scales

Author:

Pongtaveekan Natthaporn1,Thammajaree Piyapan1,Piyamongkala Kowit1ORCID,Pongstabodee Nattaya2,Manguiam Von Louie R.3

Affiliation:

1. Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand

2. Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

3. School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila, Philippines

Abstract

Industrial cutting fluid wastewater (CFW) is considered as hazardous substance due to its detrimental effects to the environment and workers welfare. Treatment of this type of wastewater was sometimes disregarded due to lack of knowledge and resources. However, adsorption, a straightforward approach, was used in this study to address this problem. The feasibility of the bagasse and modified bagasse in the adsorption of CFW was determined. Varying the adsorbent dosage resulted in an increase in the percent adsorption, whereas a decline for the adsorption capacity at equilibrium using a single-stage batch laboratory- and pilot-scale adsorption. The point of zero charge of the bagasse and the modified bagasse was measured to be at pH 5.5 and 2.4, respectively. The experiment also determined that, for a liter of CFW, 10.2 g and 59.2 g of the modified bagasse are required under laboratory- and pilot-scale systems, respectively. Isotherms of Langmuir, Freundlich, and Temkin were used in order to describe the adsorption process. It was determined that the surface heterogeneity and the pore size contributed to the adsorption of CFW; thus, Freundlich isotherm best fitted the data. Functional groups were verified using FTIR analysis and the heat of combustion, and their proximate analyses were determined. Based on the results under laboratory- and pilot-scale systems, modified bagasse is a viable material for the adsorption of CFW and solid fuel source.

Funder

King Mongkut's University of Technology North Bangkok

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3