Remote Sensing Image Recognition Based on LOG-T-SSA-LSSVM and AE-ELM Network

Author:

Sun Chang-Jian1ORCID,Gao Fang23ORCID

Affiliation:

1. College of Electronic Science and Engineering, Jilin University, Changchun 130012, China

2. College of Computer Science and Technology, Jilin University, Changchun 130012, China

3. Chang Guang Satellite Technology Co., Ltd., Changchun 130000, China

Abstract

Aiming at the influence of different working conditions on recognition accuracy in remote sensing image recognition, this paper adopts hierarchical strategy to construct a network. Firstly, in order to establish the classification relationship between different samples, labeled samples are used for classification. A Logistic-T-distribution-Sparrow Search Algorithm-Least Squares Support Vector Machines (LOG-T-SSA-LSSVM) classification network is proposed. LOG-T-SSA algorithm is used to optimize parameters in LSSVM to establish a better network to achieve accurate classification between sample sets and then identify according to different categories. Through UCI dataset test, the accuracy of LOG-T-SSA-LSSVM network classification is significantly improved compared with that of contrast network. The autoencoder is integrated with Extreme Learning Machine, and the autoencoder is used to realize data compression. The advantages of Extreme Learning Machine (ELM) network, such as less training parameters, fast learning speed, and strong generalization ability, are fully utilized to realize efficient and supervised recognition. Experiments verify that the autoencoder-extreme learning machine (AE-ELM) network has a good recognition effect when the sigmoid activation function is selected and the number of hidden layer neurons are 2000. Finally, after image recognition under different working conditions, it is proved that the recognition accuracy of AE-ELM based on LOG-T-SSA-LSSVM classification is significantly improved compared with traditional ELM network and Particle Swarm Optimization-Extreme Learning Machine (PSO-ELM) network.

Funder

Key Scientific and Technological Research and Development Projects of Jilin

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference41 articles.

1. Deep learning face representation by joint identification-verification;Y. Sun

2. SphereFace: Deep Hypersphere Embedding for Face Recognition

3. DeepID3: face recognition with very deep neural networks;Y. Sun,2015

4. Synchronization for fractional-order neural networks with full/under-actuation using fractional-order sliding mode control

5. Multistage Object Detection With Group Recursive Learning

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3