A Highly Sensitive and Selective Colorimetric Hg2+ Ion Probe Using Gold Nanoparticles Functionalized with Polyethyleneimine

Author:

Kim Kyung Min12ORCID,Nam Yun-Sik3,Lee Yeonhee3,Lee Kang-Bong1ORCID

Affiliation:

1. Green City Technology Institute, Korea Institute of Science and Technology, Hwarang-ro 14 gil 5, Seoul 02792, Republic of Korea

2. Department of Chemistry, Korea University, Anam-ro, Seongbuk-gu, P.O. Box 145, Seoul 136-701, Republic of Korea

3. Advanced Analysis Center, Korea Institute of Science and Technology, Hwarang-ro 14 gil 5, Seoul 02792, Republic of Korea

Abstract

A highly sensitive and selective colorimetric assay for the detection of Hg2+ ions was developed using gold nanoparticles (AuNPs) conjugated with polyethyleneimine (PEI). The Hg2+ ion coordinates with PEI, decreasing the interparticle distance and inducing aggregation. Time-of-flight secondary ion mass spectrometry showed that the Hg2+ ion was bound to the nitrogen atoms of the PEI in a bidentate manner (N–Hg2+–N), which resulted in a significant color change from light red to violet due to aggregation. Using this PEI-AuNP probe, determination of Hg2+ ion can be achieved by the naked eye and spectrophotometric methods. Pronounced color change of the PEI-AuNPs in the presence of Hg2+ was optimized at pH 7.0, 50°C, and 300 mM·NaCl concentration. The absorption intensity ratio (A700/A514) was correlated with the Hg2+ concentration in the linear range of 0.003–5.0 μM. The limits of detection were measured to be 1.72, 1.80, 2.00, and 1.95 nM for tap water, pond water, tuna fish, and bovine serum, respectively. Owing to its facile and sensitive nature, this assay method for Hg2+ ions can be applied to the analysis of water and biological samples.

Funder

Korea Institute of Science and Technology

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3