A Versatile SERS Sensor for Multiple Determinations of Polycyclic Aromatic Hydrocarbons and Its Application Potential in Analysis of Fried Foods

Author:

Wang Shi1,Cheng Jie1ORCID,Han Caiqin2,Xie Jianchun3

Affiliation:

1. Institute of Quality Standards and Testing Technologies for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2. Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China

3. Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China

Abstract

Polycyclic aromatic hydrocarbons (PAHs), due to their high hydrophobicity, have low affinity for metallic SERS-active surfaces, which leads to their low SERS detection sensitivity. Various functional groups have been used to improve the affinity of metallic substrates towards the target PAHs. However, a large portion of the signals generated from the “first-layer effect” of the functionalized substrates may complicate the spectrum, leading to a distortion in the assignment of the intrinsic SERS fingerprints of PAHs. In this study, a SERS sensor composed of Au nanoparticles (AuNPs) and reoxidized graphene oxide (rGO) was developed for the simultaneous determination of 16 EPA priority PAHs. The synthesis of the rGO/AuNP substrate can be realized without a complicated modification process. All the 16 PAHs could be identified based on their characteristic peaks in the presence of the composited substrate, with estimated LOD as low as 0.2–2 ng·mL−1. The binary linear regression was optimized as the fitting model for all PAHs except for benzo(k)fluoranthene, with the linear correlation coefficient ranging from 0.9889 to 0.9997. Based on the developed SERS substrates and sample pretreatment, the characteristic SERS peaks of four PAHs in Chinese traditional fried food (youtiao) were identified without any background interference. The whole detection process only takes approximately 15 minutes. The results demonstrate the potential of the multicomponent on-field detection of PAHs.

Funder

National Key Research and Development Program

Publisher

Hindawi Limited

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3