Affiliation:
1. Department of Mathematics and Computer Science, Royal Military College of Canada, P.O. Box 17000, Kingston, Ontario, Canada K7K 7B4
2. School of Computer Applications, Kalinga Institute of Industrial Technology, Bhubaneswar 751 024, India
Abstract
This paper presents analytically explicit results for the distribution of the number of customers served during a busy period for special cases of the M/G/1 queues when initiated with m customers. The functional equation for the Laplace transform of the number of customers served during a busy period is widely known, but several researchers state that, in general, it is not easy to invert it except for some simple cases such as M/M/1 and M/D/1 queues. Using the Lagrange inversion theorem, we give an elegant solution to this equation. We obtain the distribution of the number of customers served during a busy period for various service-time distributions such as exponential, deterministic, Erlang-k, gamma, chi-square, inverse Gaussian, generalized Erlang, matrix exponential, hyperexponential, uniform, Coxian, phase-type, Markov-modulated Poisson process, and interrupted Poisson process. Further, we also provide computational results using our method. The derivations are very fast and robust due to the lucidity of the expressions.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献