Investigation of Cure Reaction, Rheology, Volume Shrinkage and Thermomechanical Properties of Nano-TiO2 Filled Epoxy/DDS Composites

Author:

Parameswaranpillai Jyotishkumar1,George Abhilash1,Pionteck Jürgen2ORCID,Thomas Sabu34

Affiliation:

1. Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Cochin, Kerala 682022, India

2. Leibniz-Institute for Polymer Research Dresden, Hohe Strare 6, 01069 Dresden, Germany

3. School of Chemical Sciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686560, India

4. Centre for Nanoscience & Nanotechnology, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686560, India

Abstract

The cure reaction, rheology, volume shrinkage, and thermomechanical behavior of epoxy-TiO2 nanocomposites based on diglycidyl ether of bisphenol A cured with 4,4′-diaminodiphenylsulfone have been investigated. The FTIR results show that, at the initial curing stage, TiO2 acts as a catalyst and facilitates the curing. The catalytic effect of TiO2 was further confirmed by the decrease in maximum exothermal peak temperature (DSC results); however, it was also found that the addition of TiO2 decreases the overall degree of cure, as evidenced by lower total heat of reaction of the cured composites compared to neat epoxy. The importance of cure rheology in the microstructure formation during curing was explored by using rheometry. From the PVT studies, it was found that TiO2 decreases the volume shrinkage behavior of the epoxy matrix. The mechanical properties of the cured epoxy composites, such as tensile strength, tensile modulus, flexural strength, flexural modulus, impact strength, and fracture toughness of the polymer composites, were examined. The nanocomposites exhibited good improvement in dimensional, thermal, and mechanical properties with respect to neat cross-linked epoxy system. FESEM micrographs of fractured surfaces were examined to understand the toughening mechanism.

Funder

Department of Science and Technology, Government of India

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3