The Secretion from Neural Stem Cells Pretreated with Lycopene Protects against tert-Butyl Hydroperoxide-Induced Neuron Oxidative Damage

Author:

Huang Cuiqin1,Gan Danhui12,Fan Chongzhu1,Wen Caiyan1,Li An1,Li Qin1,Zhao Jiayi1,Wang Zhen1,Zhu Lihong1,Lu Daxiang1ORCID

Affiliation:

1. Department of Pathophysiology, Institute of Brain Science Research, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China

2. Department of Pathology, Guangzhou Overseas Chinese Hospital, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China

Abstract

Neural stem cells (NSCs) hold great potential for the treatment of Alzheimer’s disease (AD) through both cellular replacement and their secretion of trophic factors. Lycopene is a potent β-carotenoid antioxidant that has been shown to ameliorate oxidative damage in previous studies. However, it is unclear if lycopene can interact with NSCs to induce the secretion of growth factors, and whether pretreatment with lycopene will allow NSCs to secrete enough trophic factors to reduce oxidative damage to neurons. We pretreated cultured NSCs with lycopene, then applied the lycopene-treated-NSC-conditioned media (Ly-NSC-CM) to primary neuronal cultures exposed to tert-butyl hydroperoxide (t-BHP) to induce oxidative damage. We found that lycopene promoted the secretion of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) from NSCs. In addition, Ly-NSC-CM attenuated oxidative stress and reduced t-BHP-induced cell apoptosis. We found an antiapoptotic effect related to inhibited expression of Bax/Bcl-2, cytochrome C, and cleaved caspase-3. Moreover, Ly-NSC-CM increased the levels of synaptic proteins, including synaptophysin (SYP) and postsynaptic density 95 (PSD-95), and activated the PI3K/Akt pathway in cultured neurons. Collectively, these data indicate that Ly-NSC-CM could protect neurons from t-BHP-induced oxidative damage.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3