Classification Method and Application of Rock Fracture Ability by Supercritical CO2 Blasting

Author:

Zhu Xiaohong1,Jia Jianhong2ORCID,Cai Zhongwei3

Affiliation:

1. Wuchang University of Technology, Wuhan, Hubei, 430223, China

2. Three Gorges Geotechnical Consultants Co., Ltd., Wuhan, Hubei, 430074, China

3. China International Water & Electric Corporation, Beijing 100120, China

Abstract

In order to study the fracture ability classification of rock mass under the cracking action of supercritical CO2 phase transition, based on the classification theory of rock mass in blasting engineering, an analytic hierarchy process (AHP)-entropy weight method (EWM) and the cloud model classification method for rock mass cracking under CO2 phase transformation are proposed. In this method, rock density, rock tensile strength, rock wave impedance, and rock mass integrity coefficient are used as the factors to determine the level of rock mass fracturing, and the evaluation index system of rock mass fracturing is established. Through this evaluation method, the rock mass in a reconstruction project section of Nyingchi, Tibet, is classified and evaluated. The results present that this new classification method of rock mass fracture ability uses AHP–EWM to carry out the weight distribution of the classification index. In addition, it is combined with the cloud model for the classification division, overcoming the traditional classification method fixed with appraisal pattern flaw. Therefore, it has validity and feasibility. According to the characteristics of fracture ability, the rock masses in the area to be rebuilt on the Tibet Highway are divided into grade II, grade III, and grade IV, which provides scientific guidance for the construction of the project.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3