Research on Initiation of Carbon Dioxide Fracturing Pipe Using the Liquid Carbon Dioxide Phase-Transition Blasting Technology

Author:

Xia Jieqin,Dou Bin,Tian HongORCID,Zheng Jun,Cui Guodong,Kashif Muhammad

Abstract

Liquid carbon dioxide (L-CO2) phase-transition blasting technology (LCPTB) has caused wide concern in many fields, but there is a lack of research on the initiation of the carbon dioxide fracturing pipe. Studies regarding the carbon dioxide fracturing pipe initiation are critical for controlling and optimizing the LCPTB. Therefore, in this article, a series of exploratory experiments of carbon dioxide blasting were carried out to investigate the qualitative and quantitative relationships between the carbon dioxide fracturing pipe initiation and the three key variables (the filling mass of liquid carbon dioxide (L-CO2) (X1), the amount of chemical heating material (X2) and the thickness of the constant-stress shear plate (X3)). The failure mechanisms of three variables on the phase-transition blasting process of a carbon dioxide fracturing pipe was analyzed qualitatively based on experiment temperature, strain curve and failure form of constant-stress shear plate. An empirical model between the carbon dioxide fracturing pipe initiation (Y) and the three key variables (X1, X2, X3) was obtained after processing experiment result data quantitatively. Based on the phase-transition and blasting process of carbon dioxide, two methods, the Viral–Han–Long (VHL) equation of gas state (EOS) and the strength-failure method were used to calculate the blasting pressure and determine the failure mode of the fracturing pipe. The proposed blasting empirical model can be used to optimize the structural design of carbon dioxide fracturing pipes, guide on-site carbon dioxide blasting operations and further achieve the best blasting effect of LCPTB, so this work can enable LCPTB to be better applied to practical projects.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3