Affiliation:
1. Experimental Training Center,Chuzhou Vocational and Technical College, Chuzhou 239000, China
Abstract
In the industrial field, industrial robots have taken over the heavy lifting that used to be done by traditional handicraft assembly lines, greatly freeing up human resources and improving production efficiency and safety. As a result, the focus of this paper is on the SLAM-based robot localization and navigation algorithm (simultaneous localization and mapping). An attitude estimation algorithm based on KF (Kalman filtering) information fusion of vision SLAM and IMU (Inertial Measurement Unit) is proposed, and the ORB-SLAM algorithm is studied and perfected. The fusion of the two postures improves the accuracy and frequency of the robot’s attitude estimation during motion. In addition, PSO (Particle Swarm Optimization) technology is used to optimize the resampling process, and PSO optimizes the particle set to alleviate the problem of particle degradation and exhaustion caused by resampling in the FastSLAM algorithm. Finally, the algorithm is verified to meet the requirements of positioning and composition accuracy, as well as the feasibility and effectiveness of robot autonomous navigation, using the open simulation platform.
Funder
Natural Science Research Project of Anhui Universities
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献