Research on Robot Positioning and Navigation Algorithm Based on SLAM

Author:

Dai Yue1ORCID

Affiliation:

1. Experimental Training Center,Chuzhou Vocational and Technical College, Chuzhou 239000, China

Abstract

In the industrial field, industrial robots have taken over the heavy lifting that used to be done by traditional handicraft assembly lines, greatly freeing up human resources and improving production efficiency and safety. As a result, the focus of this paper is on the SLAM-based robot localization and navigation algorithm (simultaneous localization and mapping). An attitude estimation algorithm based on KF (Kalman filtering) information fusion of vision SLAM and IMU (Inertial Measurement Unit) is proposed, and the ORB-SLAM algorithm is studied and perfected. The fusion of the two postures improves the accuracy and frequency of the robot’s attitude estimation during motion. In addition, PSO (Particle Swarm Optimization) technology is used to optimize the resampling process, and PSO optimizes the particle set to alleviate the problem of particle degradation and exhaustion caused by resampling in the FastSLAM algorithm. Finally, the algorithm is verified to meet the requirements of positioning and composition accuracy, as well as the feasibility and effectiveness of robot autonomous navigation, using the open simulation platform.

Funder

Natural Science Research Project of Anhui Universities

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference25 articles.

1. Development of a Human–Robot Hybrid Intelligent System Based on Brain Teleoperation and Deep Learning SLAM

2. A navigation algorithm of the mobile robot in the indoor and dynamic environment based on the PF-SLAM algorithm

3. MPC Based Trajectory Tracking for An Automonous Deep-Sea Tracked Mining Vehicle

4. Navigation of substation inspection robot based on laser sensor[J];F. Kun;Sensors and Microsystems,2019

5. Implementation of SLAM and navigation function of indoor mobile robot based on ROS;Z. Li;Shandong Industrial Technology,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3