Dynamical Simulation and Statistical Analysis of Velocity Fluctuations of a Turbulent Flow behind a Cube

Author:

Oliveira T. F.,Miserda R. B.,Cunha F. R.

Abstract

A statistical approach for the treatment of turbulence data generated by computer simulations is presented. A model for compressible flows at large Reynolds numbers and low Mach numbers is used for simulating a backward-facing step airflow. A scaling analysis has justified the commonly used assumption that the internal energy transport due to turbulent velocity fluctuations and the work done by the pressure field are the only relevant mechanisms needed to model subgrid-scale flows. From the numerical simulations, the temporal series of velocities are collected for ten different positions in the flow domain, and are statistically treated. The statistical approach is based on probability averages of the flow quantities evaluated over several realizations of the simulated flow. We look at how long of a time average is necessary to obtain well-converged statistical results. For this end, we evaluate the mean-square difference between the time average and an ensemble average as the measure of convergence. This is an interesting question since the validity of the ergodic hypothesis is implicitly assumed in every turbulent flow simulation and its analysis. The ergodicity deviations from the numerical simulations are compared with theoretical predictions given by scaling arguments. A very good agreement is observed. Results for velocity fluctuations, normalized autocorrelation functions, power spectra, probability density distributions, as well as skewness and flatness coefficients are also presented.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthetic-Eddy Method for Urban Atmospheric Flow Modelling;Boundary-Layer Meteorology;2010-05-28

2. Hypothesis Designs for Three-Hypothesis Test Problems;Mathematical Problems in Engineering;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3