Non-local two-dimensional turbulence and Batchelor's regime for passive scalars

Author:

NAZARENKO S.,LAVAL J.-P.

Abstract

We study small-scale two-dimensional non-local turbulence, where interaction of small scales with large vortices dominates in the small-scale dynamics, by using a semi-classical approach developed in Dyachenko, Nazarenko & Zakharov (1992), Nazarenko, Zabusky & Scheidegger (1995), Dubrulle & Nazarenko (1997) and Nazarenko, Kevlahan & Dubrulle (1999). Also, we consider a closely related problem of passive scalars in Batchelor's regime, when the Schmidt number is much greater than unity. In our approach, we do not perform any statistical averaging, and most of our results are valid for any form of the large-scale advection. A new invariant is found in this paper for passive scalars when their initial spectrum is isotropic. It is shown, analytically, numerically and using a dimensional argument, that there is a spectrum corresponding to an inverse cascade of the new invariant, which scales like k−1 for turbulent energy and k1 for passive scalars. For passive scalars, the k1-spectrum was first found by Kraichnan (1974) in the special case of advection δ-correlated in time, and until now it was believed to correspond to an absolute thermodynamic equilibrium and not a cascade. We also obtain, both analytically and numerically, power-law spectra of decaying two-dimensional turbulence, k−2, and passive scalar, k0.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3