Understanding the effect of Prandtl number on momentum and scalar mixing rates in neutral and stably stratified flows using gradient field dynamics

Author:

Bragg Andrew D.ORCID,de Bruyn Kops Stephen M.ORCID

Abstract

Recently, direct numerical simulations (DNS) of stably stratified turbulence have shown that as the Prandtl number ( $Pr$ ) is increased from 1 to 7, the mean turbulent potential energy dissipation rate (TPE-DR) drops dramatically, while the mean turbulent kinetic energy dissipation rate (TKE-DR) increases significantly. Through an analysis of the equations governing the fluctuating velocity and density gradients we provide a mechanistic explanation for this surprising behaviour and test the predictions using DNS. We show that the mean density gradient gives rise to a mechanism that opposes the production of fluctuating density gradients, and this is connected to the emergence of ramp cliffs. The same term appears in the velocity gradient equation but with the opposite sign, and is the contribution from buoyancy. This term is ultimately the reason why the TPE-DR reduces while the TKE-DR increases with increasing $Pr$ . Our analysis also predicts that the effects of buoyancy on the smallest scales of the flow become stronger as $Pr$ is increased, and this is confirmed by our DNS data. A consequence of this is that the standard buoyancy Reynolds number does not correctly estimate the impact of buoyancy at the smallest scales when $Pr$ deviates from 1, and we derive a suitable alternative parameter. Finally, an analysis of the filtered gradient equations reveals that the mean density gradient term changes sign at sufficiently large scales, such that buoyancy acts as a source for velocity gradients at small scales, but as a sink at large scales.

Funder

Office of Naval Research

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3