Affiliation:
1. Chongqing Collaborative Innovation Center for Functional Food, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China
2. Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 46958, Republic of Korea
3. Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing 400030, China
4. College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
5. Department of Neurosurgery, People’s Hospital of Chongqing Banan District, Chongqing 401320, China
Abstract
This study is aimed at identifying the bioactive components in lotus leaf flavonoid extract (LLFE) and analyzing the antioxidant and anti-inflammatory activities of LLFE in vitro and in vivo. The flavonoids in LLFE were determined by UHPLC-MS/MS. The effect of LLFE on damaged 293T cells (H2O2, 0.3 mmol/L) was determined by MTT assay, and the activity of antioxidant enzymes was measured by kits. We studied the antioxidant and anti-inflammatory effects of LLFE on D-Gal/LPS (30 mg/kg·bw and 3 μg/kg·bw)-induced aging mice. We also evaluated the main organ index, pathological changes in the liver, lung, and kidney, liver function index, biochemical index, cytokine level, and mRNA expression level in serum and liver. The results showed that LLFE contains baicalein, kaempferol, kaempferid, quercetin, isorhamnetin, hyperoside, lespenephryl, and rutin. LLFE reduced the oxidative damage sustained by 293T cells, increased the levels of SOD, CAT, GSH, and GSH-Px, and decreased the level of MDA. The animal studies revealed that LLFE reduced oxidative damage and inflammation in injured mice, inhibited increases in AST, ALT, MDA, and NO, increased SOD, CAT, GSH, and GSH-Px levels, upregulated anti-inflammatory cytokines IL-10 and IL-12, and downregulated proinflammatory cytokines IL-6, IL-1β, TNF-α, and IFN-γ. Furthermore, the expression of antioxidant- and anti-inflammatory-related mRNA was consistent with the above results.
Funder
Chongqing Kewei Joint Medical Research Project, China
Subject
Cell Biology,Aging,General Medicine,Biochemistry