LMI-Based Robust Stabilization of a Class of Input-Constrained Uncertain Nonlinear Systems with Application to a Helicopter Model

Author:

Gritli Hassène12ORCID

Affiliation:

1. Institut Supérieur des Technologies de l’Information et de la Communication, Université de Carthage, 1164 Borj Cedria, Tunis, Tunisia

2. Laboratoire Robotique, Informatique et Systèmes Complexes (RISC-LR16ES07), Ecole Nationale d’Ingénieurs de Tunis, Université de Tunis El Manar, BP. 37, Le Belvédère, 1002 Tunis, Tunisia

Abstract

This paper is concerned with the robust stabilization of a class of continuous-time nonlinear systems, with an application to the pitch dynamics of a simple helicopter model, via an affine state-feedback control law using the linear matrix inequality (LMI) approach. The nonlinear dynamics is subject to norm-bounded parametric uncertainties and disturbances. In addition, the problem of actuator nonlinearity is addressed by considering the saturation effect of the control law. We demonstrate first that the synthesis problem of the saturated controller is expressed in terms of bilinear matrix inequalities (BMIs). Thanks to the Schur complement lemma and the matrix inversion lemma, we convert these BMIs into LMIs allowing the simultaneous computation of the two gains of the affine controller. Furthermore, we address in this work the estimation problem of the domain of attraction using the invariant set concept. This is solved by computing the largest attractive invariant ellipsoid. Compared with previous works, the research procedure of such ellipsoidal set is achieved in a single step with a reduced number of LMI constraints and then with less conservative conditions. A portfolio of numerical results is presented. The effectiveness and robustness of the proposed saturated controller in the stabilization of the adopted helicopter pitch model toward parametric uncertainties and disturbances are illustrated through simulation results.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3